What is a container?

Richard Monson-Haefel

Enterprise beans are software components that run in a special environment called an EJB container. The container hosts and manages an enterprise bean in the same manner that a Java WebServer hosts a Servlet or an HTML browser hosts a Java applet. An enterprise bean cannot function outside of an EJB container. The EJB container manages every aspect of an enterprise bean at run time including remote access to the bean, security, persistence, transactions, concurrency, and access to and pooling of resources.

The container isolates the enterprise bean from direct access by client applications. When a client application invokes a remote method on an enterprise bean, the container first intercepts the invocation to ensure persistence, transactions, and security are applied properly to every operation a client performs on the bean. The container manages security, transactions, and persistence automatically for the bean, so the bean developer doesn't have to write this type of logic into the bean code itself. The enterprise bean can focus on encapsulating business rules, while the container takes care of everything else.

Containers will manage many beans simultaneously in the same fashion that a Java WebServer manages many Servlets. To reduce memory consumption and processing, containers pool resources and manage the lifecycles of all the beans very carefully. When a bean is not being used a container will place it in a pool to be reused by another client, or possibly evict it from memory and only bring it back when its needed. Because client applications don't have direct access to the beans -- the container lies between the client and bean -- the client application is completely unaware of the containers resource management activities. A bean that is not in use, for example, might be evicted from memory on the server, while its remote reference on the client remains intact. When the client invokes a method on the remote reference, the container simply re-incarnates the bean to service the request. The client application is unaware of the entire process.

An enterprise bean depends on the container for everything it needs. If an enterprise bean needs to access a JDBC connection or another enterprise bean, it does so through the container; if an enterprise bean needs to access the identity of its caller, obtain a reference to itself, or access properties it does so through the container. The enterprise bean interacts with its container through one of three mechanisms: callback methods, the EJBContext interface, or JNDI.

Callback Methods: Every bean implements a subtype of the EnterpriseBean interface which defines several methods, called callback methods. Each callback method alerts the bean of a different event in its lifecycle and the container will invoke these methods to notify the bean when it's about to pool the bean, persist its state to the database, end a transaction, remove the bean from memory, etc. The callback methods give the bean a chance to do some housework immediately before or after some event. Callback methods are discussed in more detail in other sections.

EJBContext: Every bean obtains an EJBContext object, which is a reference directly to the container. The EJBContext interface provides methods for interacting with the container so that that bean can request information about its environment like the identity of its client, the status of a transaction, or to obtain remote references to itself.

JNDI: Java Naming and Directory Interface is a Java extension API for accessing naming systems like LDAP, NetWare, file systems, etc. Every bean automatically has access to a special naming system called the Environment Naming Context (ENC). The ENC is managed by the container and accessed by beans using JNDI. The JNDI ENC allows a bean to access resources like JDBC connections, other enterprise beans, and properties specific to that bean.

The EJB specification defines a bean-container contract, which includes the mechanisms (callbacks, EJBContext, JNDI ENC) described above as well as a strict set of rules that describe how enterprise beans and their containers will behave at runtime, how security access is checked, transactions are managed, persistence is applied, etc. The bean-container contract is designed to make enterprise beans portable between EJB containers so that enterprise beans can be developed once then run in any EJB container. Vendors like BEA, IBM, and Gemstone sell application servers that include EJB containers. Ideally, any enterprise bean that conforms to the specification should be able to run in any conformant EJB container.

Portability is central to the value that EJB brings to the table. Portability ensures that a bean developed for one container can be migrated to another if another brand offers more performance, features, or savings. Portability also means that the bean developer's skills can be leveraged across several EJB container brands, providing organizations and developers with better opportunities.

In addition to portability, the simplicity of the EJB programming model makes EJB valuable. Because the container takes care of managing complex tasks like security, transactions, persistence, concurrency and resource management the bean developer is free to focus attention on business rules and a very simple programming model. A simple programming model means that beans can be developed faster without requiring a Ph.D. in distributed objects, transactions and other enterprise systems. EJB brings transaction processing and distributed objects development into the mainstream.